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Abstract 

Quantizers are used in networked control systems to compress continuous-valued signals into discrete-valued 

signals, which are subsequently sent over and received through communication channels. A quantizer must be 

constructed to minimize the output difference between before and after the quantizer is inserted because such 

quantization frequently reduces the control performance. We take into consideration the design problem for 

continuous-time quantizers in terms of the broad anodization and robustness of networked control systems. This 

work focuses on a numerical optimization approach for a continuous-time dynamic quantizer taking switching 

speed into account. We explain that both the temporal and spatial resolution limits can be taken into account in 

analysis and synthesis at the same time using a matrix uncertainty approach of sampled-data control. Finally, 

using numerical examples, we contrast the proposed and current strategies for sluggish switching. From 

Introduction 

With the rapid network technology development, 

the networked control systems (NCSs) have been 

widely studied [1–10]. One of the challenges in 

NCSs is quantized control. In NCSs, the 

continuous-valued signals are compressed and 

quantized to the discrete-valued signals via the 

quantizer of the communication channel, and such 

quantization often degrades the control 

performance. Hence, a desirable Quantier 

minimizes the performance error between before 

and after the quantizer insertion. Motivated by this, 

researchers [11–14] have provided optimal 

dynamic quantizers for the following problem 

foremulation in the discrete-time domain. For a 

given plant 𝑃, synthesize a “dynamic” quantizer 𝑄𝑑 

such that the system Σ𝑄 composed of 𝑃 and 𝑄𝑑 in 

Figure 1(a) “optimally” approximates the plant 𝑃 in 

Figure 1(b) in the sense of the input-output relation. 

The obtained quantizer allows us to design various 

controllers for the plant 𝑃 on the basis of the 

conventional control theories. Also, this framework 

is helpful in not only the NCS problem but also 

various control problems such as hybrid control, 

embedded system control, and on-off actuator 

control. When we consider controlling a 

mechanical system with an on-off actuator, first the 

controlled object and its uncertainties are usually 

modelled in the continuoustime domain. Second,  

 

 

the model and its uncertainties are discretized to 

apply the above dynamic quantizer. However, the 

discretization sometimes results in uncertainties 

more complicated than those in the original model 

and creates undesirable complexity in robust 

control. The continuoustime setting quantizer is 

more suitable for the robust control of the 

quantized system than discrete-time one. Thus, our 

previous works [15, 16] have considered the 

continuous-time setting, while a number of the 

discrete-time settings have been studied by others 

[11–14]. In these works, it is assumed that the 

switching process of discretizing the 

continuousvalued signal is sufficiently quick 

relative to the control frequency and only the 

spatial determination (quantized accuracy) is 

considered as the quantization effect. This is 

 

because the switching speed of the continuous-time 

deltasigma modulator for wireless broadband 

network systems is from 1 MHz to 100 MHz [17, 

18]. On the other hand, the above assumption is 

essentially weak in the case of the slow switching 

such as the mechanical systems with on-off 

actuators [19]. For the slow switching, we need to 

consider the quantization effect on both the 

switching speed and the spatial constraints in 

continuous time. For example, Ishikawa et al. 

proposed a two-step design of a feedback 

modulator [20]: (I) the control performance of the 

modulator is considered under only the spatial 
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constraint, and (ii) the modulator is tuned in terms 

of the switching speed constraint. However, the 

structure of the modulator is more restricted than 

that of the dynamic quantizer and the obtained 

modulator is not always optimal. Therefore, the 

dynamic quantizer under temporal resolution 

(switching speed) and spatial resolution constraints 

has still to be optimally designed. The simultaneous 

consideration of the two constraints is the particular 

challenge we address in this paper. We propose a 

numerical optimization method for the continuous-

time dynamic quantizer under switching speed and 

quantized accuracy constraints. To achieve the 

method, this paper solves the design problem via 

sampled-data control framework that has so far 

provided various results for networked control 

problems [7–9]. We refer to the previous work on 

optimal dynamic quantizer design [11, 12] and 

consider the basic feedforward system in Figure 

1(a). In addition to the invariant set analysis [21, 

22] similarly to our previous works [13, 15, 16], 

this paper utilizes a matrix uncertainty approach 

[23, 24] that is proposed in a sampleddata control 

framework. Although the obtained results can be 

more conservative than those in the previous works 

on continuous-time dynamic quantizer [15, 16] 

from the viewpoint of the class of the exogenous 

input and the applicable plants, both temporal and 

spatial resolution constraints can be addressed in 

analysis and synthesis, simultaneously. For the fast-

switching case, the proposed conditions converge 

to the corresponding conditions of our previous 

works. Finally, for the slow switching, we compare 

the proposed and existing methods [15, 16] through 

numerical examples. In particular, a new insight is 

presented for the two-step design of the existing 

continuous-time optimal quantizer. Notation. The 

set of 𝑛×𝑚 (positive) real matrices is denoted by 

R𝑛×𝑚 (R𝑛×𝑚 +). The set of 𝑛×𝑚 (positive) 

integer matrices is denoted by N𝑛×𝑚 (N𝑛×𝑚 +). 

We denote by L𝑝 ∞ the set 

 

of piecewise-continuous functions of 𝑝-

dimensional finite vectors such that ∞-norm of its 

functions is finite. 0𝑛×𝑚 and 𝐼𝑚 (or for simplicity 

of notation, 0 and 𝐼) denote the 𝑛×𝑚 zero matrix 

and the 𝑚×𝑚 identity matrix, respectively. For a 

matrix 𝑀, 𝑀𝑇, 𝜌(𝑀) and 𝜎max(𝑀) denote its 

transpose, its spectrum radius, and its maximum 

singular value, respectively. For a vector 𝑥, 𝑥𝑖 is 

the 𝑖th entry of 𝑥. For a symmetric matrix 𝑋, 𝑋 > 0 

(𝑋 ≥ 0) means that 𝑋 is positive (semi) definite. For 

a vector 𝑥 and a sequence of vectors 𝑋: = {𝑥1, 𝑥2, . 

. .}, ‖𝑥‖ and ‖𝑋‖ denote their ∞-norms, respectively. 

Finally, we use the “packed” notation (𝐴 𝐵 𝐶 𝐷): = 

𝐶 (𝑠𝐼 − 𝐴) −1𝐵+𝐷 

Problem Formulation 

Consider the discrete-valued input system Σ𝑄 in 

Figure 1(a), which consists of the linear time 

invariant (LTI) continuoustime plant 𝑃 and the 

quantizer V = 𝑄𝑑(𝑢). The system 𝑃 is given by 

 

where 𝑥 ∈ R𝑛, 𝑧 ∈ R𝑞, 𝑢 ∈ R𝑚, and V ∈ R𝑚 

denote the state vector, the measured output, the 

exogenous input, and the quantizer output, 

respectively. The continuous-valued signal 𝑢 is 

quantized into the discrete-valued signal V via the 

quantizer 𝑄𝑑. We assume that the matrix 𝐴 is 

Hurwitz; that is, the usual system in Figure 1(b) is 

stable in the continuoustime domain. The initial 

state is given as 𝑥 (0) = 𝑥0. For the system 𝑃, 

consider the continuous-time dynamic quantizer V 

= 𝑄𝑑(𝑢) with the state vector 𝑥𝑄 ∈ R𝑛𝑄 as shown 

in Figure 2. Its switching speed ℎ ∈ R+ (or its 

temporal resolution) is determined by the operator 

𝐻𝑆, which converts 

the continuous-time signal 𝑔 into the low temporal 

resolution signal �̂� as follows: 

 

That is, �̂�𝑄 = 𝐻𝑆𝑢𝑄. 𝑆 is the ideal sampler with the 

sampling period ℎ and 𝐻 is the zero-order hold 

operator. The spatial resolution of the quantizer 𝑄𝑑 

is expressed by the static quantizer 𝑞: R𝑚 → 𝑑N𝑚 

with the quantization interval 𝑑 ∈ R+, that is 

 

Note that 𝑞 is of the nearest-neighbour type toward 

−∞ such as the midtread quantizer in Figure 3 

(‖𝑞𝑖(�̂�𝑄𝑖) − �̂�𝑄𝑖‖ ≤ 𝑑/2 where 𝑞𝑖 and �̂�𝑄𝑖 are the 𝑖th 

row of 𝑞 and �̂�𝑄) and the initial state is given by 

𝑥𝑄 (0) = 0 for the drift free of 𝑄𝑑 [11, 12]. Remark 

1. In synthesis, our previous works [15, 16] ignored 
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the operator 𝐻𝑆. In implementation, however, the 

continuous-time quantizer needs the switching 

process discretizing the continuous-valued signal. 

Of course, the applicable interval of switching 

depends on controlled objects such as narrowband 

or broadband networked systems and mechanical 

systems with on-off actuators. Therefore, it is 

important to consider the operator 𝐻𝑆 in synthesis. 

For the system Σ𝑄 in Figure 1(a) with the initial 

state 𝑥0 and the exogenous input 𝑢 ∈ L𝑚 ∞, 𝑧 (𝑡, 
𝑥0, 𝑄𝑑(𝑢)) denotes the output of 𝑧 at the time 𝑡. 
Also, for the system in Figure 1(b) without 𝑄𝑑, 𝑧∗ 

(𝑡, 𝑥0, 𝑢) denotes its output at the time 𝑡. Consider 

the following cost function: 

 

If the quantizer minimizes 𝐽(𝑄𝑑), the system Σ𝑄 

“Optimolly” approximates the usual system 𝑃 in 

the sense of the input-output relation. In this case, 

we can use the existing continuous-time controller 

design methods for the system in Figure 1(b) 

without considering the quantization effect. When 

the controlled object and its uncertainties are 

modelled in the continuous-time domain, therefore, 

the continuous-time quantizer can introduce robust 

control of the continuous-time setting directly, 

while the discrete-time quantizer requires 

discretization of the whole control system. Our 

previous works [15, 16] proposed an optimal 

dynamic quantizer for the cost function 𝐽(𝑄𝑑) for 

the fast-switching case ℎ=0. That is, only the spatial 

deterioration has been considered 

 

On the other hand, the simultaneous consideration 

of the temporal and spatial resolution constraints is 

the problem we address in this paper. To consider 

the temporal resolution constraint caused by the 

operator 𝐻𝑆, this paper modifies the cost function 

as follows: 

 

Fixing 𝜃=0 ignores the output error between before 

and after the quantizer is inserted over the 𝑘th 

sampling interval and leads to the cost function 

setting that is utilized for the discrete-time optimal 

dynamic quantizers [11–14]. Therefore, the optimal 

quantizer for 𝐽𝐻𝑆(𝑄𝑑) minimizes the output error 

between the systems in Figures 1(a) and 1(b) in 

terms of the input-output relation under the 

temporal and spatial resolution constraints. 

Motivated by the above, our objective is to solve 

the foollowing continuous-time dynamic quantizer 

synthesis probelm (E): for the system Σ𝑄 composed 

of 𝑃 and 𝑄𝑑 with the initial state 𝑥0 ∈ R𝑛 and the 

exogenous input 𝑢∈ℓ𝑚 ∞, suppose that the 

quantization interval 𝑑 ∈ R+, the switching speed ℎ 

∈ R+, and the performance level 𝛾 ∈ R+ are given. 

Characterize a continuous-time dynamic quantizer 

𝑄𝑑 (i.e., find parameters (𝑛𝑄, 𝐴𝑄, 𝐵𝑄, 𝐶𝑄)) 

achieving 𝐽𝐻𝑆(𝑄𝑑)≤𝛾. This paper proposes 

continuous-time quantizers in terms of solving the 

problem (E) on the basis of invariant set analysis 

and the sampled-data control technique, while other 

researchers [11, 12, 14] have proposed the discrete-

time Optimal ones. Remark 2. The cost function 

setting of this paper is more complicated than the 

existing continuous-time and discretetime cases 

[11–16], so this paper considers the basic feed 

forward system composed of 𝑃 and 𝑄𝑑 similar to 

the previous works on optimal dynamic quantizer 

design [11, 12]. 4 Mathematical Problems in 

Engineering Remark 3. The plant 𝑃 is restricted to 

be stable because of the feedforward structure, 

while the existing results can address unstable 

plants. To remove this restriction, we need to 

consider a feedback system structure similar to 

existing ones [13–16]. This is our future task. 

Main Result 

3.1. System Expression. In this subsection, we 

consider the system expression for the quantizer 

analysis. Define the quantization error 𝑒 as 
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Also, this paper solves the following synthesis 

problem (E): for the system Σ𝑄 composed of 𝑃 

and 𝑄𝑑 with the initial state 𝑥0 ∈ R𝑛 and the 

exogenous input 𝑢 ∈ L𝑚 ∞ in (15), suppose that 

the quantization interval 𝑑 ∈ R+, the switching 

speed ℎ ∈ R+, and the performance level 𝛾 ∈ R+ 

are given. Characterize a continuous-time dynamic 



JuniKhyat                                                                                            ( UGC Care Group I Listed Journal)  
ISSN: 2278-463                                                                                               Vol-10 Issue2-02 2020 
 

Copyright @ 2020 Authors 
 

quantizer 𝑄𝑑 (i.e., find parameters (𝑛𝑄, 𝐴𝑄, 𝐵𝑄, 

𝐶𝑄)) achieving 𝐽𝐻𝑆(𝑄𝑑) 

3.2. Quantizer Analysis. The quantization error 𝑒 of 

(16) is bounded as mentioned earlier. The reachable 

set and the invariant set characterize such a system 

with bounded input. Consider the LTI discrete-time 

system given by 

 

 

 

 



JuniKhyat                                                                                            ( UGC Care Group I Listed Journal)  
ISSN: 2278-463                                                                                               Vol-10 Issue2-02 2020 
 

Copyright @ 2020 Authors 
 

holds. Similarly to our previous papers [13, 15, 16], 

by using the L1 control technique in [21], we 

provide the sufficient conditions for computing 𝛾1 

∈ R+ and 𝛾2 ∈ R+ of (24) as follows: 

 

The inequalities (25) are difficult to test since we 

need to find P, 𝛾1, and 𝛾2 satisfying (20) and (25) 

for infinitely many values of 𝜃 ∈ [0, ℎ). Then, using 

the matrix uncertainty technique [23, 24], we 

consider their sufficient conditions, which are easy 

to compute. Considering Ω(𝜃) in (22) as a matrix 

uncertainty, we introduce the following lemma 

regarding the matrix exponential [26, 27] 

 

By using Lemma 9 and the 𝑆-procedure [23, 28, 

29], the sufficient condition analysing the cost 

function 𝐽𝐻𝑆(𝑄𝑑) of the system Σ𝑄 can be 

expressed in terms of matrix inequality as 

summarized in the following theorem. Theorem 10. 

Consider the system Σ𝑄 composed of 𝑃 and 𝑄𝑑 

with the initial state 𝑥0 ∈ R𝑛 and the exogenous 

input 𝑢 ∈ L𝑚 ∞ in (15). For the quantization 

interval 𝑑 ∈ R+ and the switching speed ℎ ∈ R+, 

the upper bound of the cost function 𝐽𝐻𝑆(𝑄𝑑) is 

given by 

 

 

 

Regarding the definition of 𝜉(𝑡), see Lemma 4. An 

advantage the condition (31) over conditions (20) is 

that it can be used for a small ℎ without numerical 

difficulty. This idea comes from [23, 24]. In the 

limit of ℎ→0, (1/ℎ) ∫ℎ 0 𝑒 𝐴and𝜏→𝐼 and (1/ℎ) ∫ℎ 0 𝑒 

𝐴𝑄ℎ d𝜏→𝐼 hold, so Φℎ → Â and Γℎ → B̂ hold. In 

the same limit, from 𝛿(ℎ) → 0, conditions (31) and 

(32) converge to the analysis conditions of the 
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continuoustime dynamic quantizer for the system Σ̂ 

in [15, 16]. On the other hand, for a small ℎ, 𝑒 𝐴ℎ 

→ 𝐼, 𝑒 𝐴𝑄ℎ → 𝐼, ∫ ℎ 0 𝑒 𝐴do𝜏→0 and ∫ ℎ 0 𝑒 𝐴𝑄ℎ 

d𝜏→0 hold, so A and B (A and B) are close to 

identity and zero matrices, respectively, and the left 

side of (20) is close to zero. In numerical 

computation, it is appropriate to fix the structure of 

𝑆 such that 𝑆Ω(𝜃) = Ω(𝜃)𝑆 holds. For example, we 

can set 𝑆=𝑠𝜃𝐼𝑛, 𝑠𝜃 ∈ R+ and this setting leads to 

the  

 

 

following optimization problem (Atop) 

 

From the matrix product such as (1/ℎ) ∫ℎ 0 𝑒 𝐴𝑄ℎ 

d𝜏 and 𝐴𝑄+𝐵𝑄𝐶𝑄 in (31), the synthesis condition 

is difficult to derive from Theorem 10 unlike the 

continuous-time case without the operator 𝐻𝑆 in 

[15, 16]. Thus, we fixed the parameters as follows: 

 

The structure (38) does not severely limit the 

synthesis because 𝐴𝑄 and 𝐵𝑄 of the continuous-

time dynamic quanttiger for the system Σ̂ in [15, 

16] are also (38). See Appendix B. In other words, 

𝑥𝑄 ̇ = 𝐴𝑥𝑄 + 𝐵𝑒𝑄 estimates the quantization 

influence on the system 𝑃. Along with this, we fix 

Q of (31) as follows: 

 

The structure (39) also does not impose a severe 

limitation on the synthesis because an appropriate 

choice of the quantizer state coordinates allows us 

to assume that Q has the special structure for the 

full order case 𝑛𝑄 = 𝑛 [30]. Under some 

circumstances (38) and (39), we obtain the 

following synthesis condition. Theorem 11. 

Consider the system Σ𝑄 composed of 𝑃 and 𝑄𝑑 

with the initial state 𝑥0 ∈ R𝑛 and the exogenous 

input 𝑢 ∈ L𝑚 ∞ in (15). Suppose that the 

quantization interval 𝑑 ∈ R+, the switching speed ℎ 

∈ R+, and the performance level 𝛾 ∈ R+ are given. 

For a scalar 𝛼ℎ ∈ [0, 1/2ℎ], there exist a 

continuous-time dynamic quantizer 𝑄𝑑 achieving 

(30) if one of the following equivalent statements 

holds. 

 

 

Proof. We fix Q as shown in (39) and introduce the 

change of variables 𝑊=𝐶𝑄𝑌. Hence, (31) and (32) 

result in (40) and (41). Also, designing 𝐶𝑄 yields 

𝛼ℎ ∈ [0, 1/2ℎ] because 𝜌(A) is determined by 𝐶𝑄 

and [0, 1/2ℎ − 𝜌(A) 2 /2ℎ] ⊆ [0, 1/2ℎ]. In the limit 

of ℎ→0; Ψℎ converges to 𝐼 and 𝛿(ℎ) converges to 

0; then conditions (40) and (41) also converge to 

the synthesis condition of the continuous-time 

dynamic quantizer for the system Σ̂ in (34). Also, 

by setting 𝑆=𝑠𝜃𝐼𝑛 for Theorem 11, the quantizer 

synthesis problem (E) is reduced to the following 

optimization problem (Sop) 
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If (Sop) is feasible, (E) is feasible. Therefore, a 

continuoustime dynamic quantizer considering both 

spatial and temporeal resolution constraints is 

obtained from Theorem 11. Remark 12. To 

consider numerical optimization analysis or 

synthesis of a quantizer as shown in (Atop) and 

(Sop), we need the signal assumption (15) in 

Theorems 10 and 11. On the other hand, for the 

high-speed switching such that ℎ is very small, the 

assumption (15) ensures that solutions to the 

problem (E) converge to us  

previous results [15, 16]. Therefore, the results of 

this paper partly include our previous results [15, 

16] although each class of exogenous signals and 

plants is restricted 

Discussion 

For the slow switching, we compare the proposed 

method and existing continuous-time quantizer [15, 

16]. Consider the system Σ𝑄. The plant 𝑃 is the 

stable minimum phase LTI system: 

 

In the case without the operator 𝐻𝑆, an optimal 

form of the continuous-time quantizer 𝑄𝑜𝑝 𝑑 [15, 

16] is given by (B.2) 

 

Figure 4: Time responses of Σ𝑄 with the proposed quantizer 

for ℎ = 0.01 

 

Figure 5: Time responses of Σ𝑄 with (B.2) for ℎ = 0.01. 

 

See Appendix B. The continuous-time quantizer 

𝑄𝑜𝑝 𝑑 and its performance are parameterized by 

the free parameter 𝑓 ∈ R+. For the simulation, we 

consider a two-step design for 𝑄𝑜𝑝 𝑑; we first set 𝑓 

and second insert the operator 𝐻𝑆 in the obtained 

𝑄𝑜𝑝 𝑑. Also, the achievable performance of 𝐽𝐻𝑆 

(𝑄𝑜𝑝 𝑑) is calculated by (Atop). For the 

comparison, we set the switching speed ℎ = 0.01 [s] 

and the quantization interval 𝑑=2. First, we set 𝑓 = 

50 and then obtain 𝑄𝑜𝑝 𝑑 with 𝛾𝑐 = 0.102. Also, 

𝛾(ℎ) = 0.219 for 𝐽𝐻𝑆 (𝑄𝑜𝑝 𝑑) is obtained from 

(Atop). Second, we solve the problem (Sop) and 

obtain 𝛾(ℎ) = 0.219 and the matrix 𝐶𝑄 = [−19.26 

−22.72]. In this case, both quantizers can 

approximate well. Figures 4 and 5 illustrate the 

simulation results of the time responses of Σ𝑄 with 

the proposed quantizer and the quantizers 𝑄𝑜𝑝 𝑑 in 

(B.2). The initial state 𝑥0 = [0 0] 𝑇 and the input 

𝑢(𝑡) = sin 𝜋𝑡 + cos 0.7𝜋𝑡 are given. In Figures 4 

and 5, the thin lines and the thick lines are for the 

conventional system in Figure 1(b) and the system 

Σ𝑄 in Figure 1(a), respectively. We see that the 

controlled outputs of the discrete-valued input 

systems with the dynamic quantizers approximate 

those of the usual systems even if the quantized 

outputs are applied. Also, the two controlled 

outputs approximated by both quantizers are 

exactly the same. Next, we consider the case ℎ = 

0.1. In this case, the two controlled outputs 

approximated by the two quantizers differ. 

(Atop)for 𝑄𝑜𝑝 𝑑 is infeasible. From (Sop), on the 

other hand, we obtain 𝛾(ℎ) = 0.949 and the matrix 

𝐶𝑄 = [−1.1321 −3.097]. Figures 6 and 7 illustrate 

the simulation results on the time responses of Σ𝑄 

with (B.2) and the proposed quantizer in the same 

fashion. We see that 𝑧(𝑡) of the usual plant 𝑃 is 

approximated by 𝑧(𝑡) of the system Σ𝑄 with the 

proposed quantizer, while 𝑧(𝑡) of the system Σ𝑄 

with (B.2) diverges. From this example, we see that 

the proposed method can address the spatial 

resolution and the temporal resolution issues, 

simultaneously. Also, Theorem 10 verifies whether 

the quantizer 𝑄𝑜𝑝 𝑑 is applicable to the given 

switching speed setting. Remark 13. In the above 

numerical experiments, the proposed quantizer is 

designed and the quantizer 𝑄𝑜𝑝 𝑑 is analysed for 𝑢 

= 𝐻𝑆𝐹 (sin 𝜋𝑡 + cos 0.7𝜋𝑡), while the time 

responses of the quantizers are simulated for 𝑢 = 

sin 𝜋𝑡 + cos 0.7𝜋𝑡. That is, this is the 

conservativeness caused by the signal assumption 

(15). However, we see that the above results verify 

the effectiveness of the proposed method even if 

the signal conservativeness exists. Here, we focus 

on the eigenvalues of A for the system Σ with 𝑄𝑜𝑝 

𝑑. The eigenvalues for 𝑓 = 50 and ℎ = 0.1 are 

{0.741, 0.819, 0.550, −4.21} and then A is unstable 

in the discrete-time domain. From Theorem 10, 

(Atop) is infeasible if 𝜌(A) is bigger than 1 (in 

other words, A is unstable). {0.741, 0.819} are the 
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eigenvalues of 𝑒 𝐴ℎ. That is, 𝑒 𝐴𝑄ℎ + ∫ ℎ 0 𝑒 𝐴𝑄𝜏 
d𝜏𝐵𝑄𝐶𝑄 (=: 𝐴𝑄(ℎ)) for 𝑄𝑜𝑝 𝑑 is unstable. Then, 

we consider the case in which 𝑓=3 and ℎ = 0.1 (𝛾𝑐 
= 0.707) such that 𝐴𝑄(ℎ) is stable. The 

corresponding eigenvalues are {0.637, 0.354}. In 

this case, 𝛾(ℎ) = 1.085 for 𝐽𝐻𝑆 (𝑄𝑜𝑝 𝑑) is obtained 

from (Atop). From the above results, the existing 

continuous-quantizer in [15, 16] may be suitable 

for a two-step design such that 𝐴𝑄(ℎ) is stable via 

the parameter 𝑓. In terms of the upper 

 

 

Figure 7: Time responses of Σ𝑄 with the proposed quantizer 

for ℎ = 0.1 

 

where the parameters (𝐴𝑄, 𝐵𝑄, 𝐶𝑄) of Ψℎ and Γℎ 

are given by (B.2). This problem is LMI for the 

plane search of 𝑓 and 𝛼ℎ. For ℎ = 0.1, its solution is 

𝑓 = 5.715 (𝛾𝑐 = 0.397) and then 𝛾(ℎ) = 0.949 for 

𝐽𝐻𝑆(𝑄𝑜𝑝 𝑑 ) is obtained. This performance is about 

the same as that of the proposed quantizer. 

Therefore, we see that Theorem 10 is also helpful 

for the two-step design of the existing continuous-

time quantizer [15, 16] even if the tractable 

optimization method instead of the plane search 

remains an issue for future work. Such a method 

correlates the parameter 𝑓 with the switching speed 

ℎ, so its insight is expected not only to result in a 

new two-step design but also to clarify the 

relationship between the discrete-time and 

continuous-time dynamic quantizers. Of course, 

important future topics also include considering the 

quantized feedback control system with unstable 

plants and generalizing the exogenous signal for 

the evaluation of the cost function. 

Conclusion 

This research has discussed continuous-time 

quantized control with a focus on broadbandization 

and robustness of networked control systems. On 

the basis of the invariant set analysis and the 

sampled-data control methodology, we have 

suggested numerical optimization methods for 

synthesizing and analyzing the continuous-time 

dynamic quantizer. The benefits of the suggested 

approach can be summed up as follows. I Unlike 

Ishikawa et al. [20] and us [15, 16], who previously 

overlooked the timing limitation in synthesis, both 

the temporal and spatial resolution limits can be 

taken into account concurrently. The proposed 

approach can therefore be used for both fast and 

slow switching scenarios. (ii) It has been 

demonstrated that each sample interval's highest 

output difference can be quantified numerically 

using 

Appendix A. Proof: 
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B. Continuous-Time Dynamic 

Quantizer [15, 16] 



JuniKhyat                                                                                            ( UGC Care Group I Listed Journal)  
ISSN: 2278-463                                                                                               Vol-10 Issue2-02 2020 
 

Copyright @ 2020 Authors 
 

 

where] (𝐴): = max {Re(𝜆): 𝜆 ∈ eSig(𝐴)}. The 

continuoustime quantizer 𝑄𝑜𝑝 𝑑 and its 

performance are parameterized by the free 

parameter 𝑓 ∈ R+. Note that the larger values of 𝑓 

not only provide the better approximation 

performance, but also switch the outputs V, more 

quickly. In other words, the quantizer from (OP) 

results in the switching that is too fast and is 

sometimes not applicable to the slow switching 

case 
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